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The maximum likelihood method was applied to the calculation of parameters of a thermo­
dynamic model in a heterogeneous binary system. The calculation program was tested on using 
the tetrahydrofuran-water system. 

When correlating the mutual solubility of liquids, three procedures are in principle 
used. In the first case, the values of composition x I and Z I are directly correlated 
as a function of temperature - see, e.g., Tsonopoulos and co-workers1 •2 • In the 
second case, the relations are applied which stem from the new knowledge of the 
behaviour at the critical point and in its vicinity - see, e.g., Vnuk 3 • Most often is 
used, however, the third (thermodynamic) procedure in which one starts from the 
equation for the excess Gibbs energy GE(T, Xl) or from equations of state. 

In this work we apply the thermodynamic procedure and parameters {bj } in the 
relation for the excess Gibbs energy are determined above all on the basis of data 
on mutual solubility (thereinafter LLE data). The advantage of this approach is 
above all the fact that the correlation obtained is not being an end in itself or it 
has not only the interpolation purpose but is utilizable also for the prediction of 
behaviour of multicomponent systems. This procedure has been used by a number 
of authors4 - 1o . 

When determining the parameters, the classical least-squares method has recently 
been replaced by the maximum likelihood method 11 - 13 (thereinafter ML method) 
which takes fully into account all the experimental facts and is applied also in this 
work. 
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THEORETICAL 

Correlation Relation Used 

To describe the phase equilibrium, the superposition of the Wilson14 and Redlich­
-Kister lS (thereinafter RK) equations which has, for a binary system, the form 16 

C 12 = b II T* + b 1 + b 3 T* , 

elL = b4 /T* + bs + b6 T*, 

QRK = X t X 2 IBlxI - X 2)J-l , 
j 

(1) 

(2) 

(3) 

(4a) 

(4b) 

(5) 

(6) 

was used in this work. For the numerical reasons it is suitable lest the orders of cal­
culated parameters {bij} should differ significantly. For this reason the transforma­
tion of temperature T* = T/300 is chosen. In the calculation program it is possible 
to choose the set of parameters {bj } considered. If, e.g., the set of indices (1, 2, 4, 5, 
7, 8, 10) is considered, then parameters b1 , bl , b4 , bs in the Wilson equation, param­
eters b7 and bg at the first term of the RK equation, and the only parameter blO 
at the second term of the RK equation were chosen for the description of phase 
equilibrium of the system. The values of all the other parameters are in this case 
zero (in a general case they are equal to the constants given in advance). 

The superposition of the Wilson and RK equations was chosen because this 
combination had proved formerly to be useful when correlating the LLE data of 
binary systems where other correlations had often failed 1 0. The modified Wilson 
equation (the Wilson equation with the first term of the RK equation) used formerly, 
however, had predicted frequently higher activity coefficients in the homogeneous 
liquid phase. To restrain this effect, a greater number of concentration terms was 
considered in the RK equation. 

Ca leu /ation Procedure 

To calculate parameters {bJ in correlation equation (1), the objective function 
was used 

FML = FLLE + F yLE , (7) 
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where 

FVLE = L {(X~V - ~lV)2 + (y~ - .Pl)2 + (T; - Tv)2 + (L-=-1)2}. (8b) 
n(VLE) C1" V C1YI C1Tv C1p 

F LLE is the part of the objective function which is related to the LLE data and which 
requires as good as possible agreement in the measured data on composition of 
coexisting phases, temperature TL , and critical point determined by parameters 
Xl C' 1'.: (of course, as far as it was specified in the system considered). F VLE is the part 
of the objective function which is related to the VLE data and which is identical 
with the objective function used by other authors 11'-13. It is evident that the F VLE 

part can be included into the calculations just in the case that the data on vapour­
-liquid equilibrium are known. 

By utilizing the choice of suitable values of standard deviations C1 XIL ' C1Z1 and C1TL 

(different for each phase and dependent on temperature), it is possible to apply, 
without complications, even the data determined by the turbidity method (i.e., 
indirect data). In such a case we proceeded so that for a given composition, e.g., 
X~L and temperature T~ (which the values of C1XIL ' C1h correspond to), the equi­
librium composition z~ was determined from an auxiliary diagram in which the 
results of all measurements were drawn. Considering that composition z; was not 
determined by direct experiment but read from the diagram, the corresponding 
value of C1z , is proportionately higher (unless this point were to be included into the 
calculation at all, then we would choose C1 ZI ~ 1). In case of the indirect VLE data 
(usually the P-Xl data at constant temperature), it is possible to use the data on 
vapour phase compositions given by GmehIing and co-workers 1 7 and a proportiona­
tely higher value of C1YI ' 

The set of parameters {bj }, which minimizes the objective function FM [., was 
determined in the following way: 1) Let us choose the initial approximation {bf}; 
the choice of this first approximation will be discussed below. 2) For the given set 
of parameters, the nearest calculated point (e.g. (~lL' Z1> Td or (~lV' .PI, Tv, fJ)) is 
determined for each experimental point (e.g. (X~L' z~, Tn or (x~v' y~, T;, pe)), and 
the critical point is calculated (if it is included into the calculation). 3) The incre­
ments of parameters {Abj } are determined so that the relations 

~~~w = ~~~ + 2Ja~lL/abj) AlJ i ' 
j 
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2~ew = 2~ld + I.(ozl/ab j ) Ab j , 
j 

Voiika, Novak, Matous: 

(9) 

are inserted into relations (7) and (8), and, on using the classical least-squares method, 
the optimum values of increments {Abj } are assessed (see relations (27». The value 
of relaxation (reduction) parameter '1, where '1 E (0, I), 

bjew = bjld + '1 Ab j , j = 1, 2, ... , M (10) 

is determined to hold F ML(bnew) < F ML(bO ld). The validity of the inequality is tested 
first for '1 = 1. If it does not hold, then '1 = 1/2, or if need be, 1/4, l/S, etc. 4) If 
'1 = 1 and simultaneously 

(FOld Fnew)/Fold < L. 

ML - ML ML ", (11) 

where e, 0 < e ~ 1, is a "sufficiently" small number chosen in advance (e = 0·001 
was chosen), then the calculation is finished. In the opposite case we return to point 
2), and the calculation cycle is repeated. 

As it is evident from the above-mentioned, the main points of the calculation are 
the determination of the nearest points and the calculation of derivatives of single 
variables with respect to the parameters. To these problems, two following sub­
chapters are devoted. 

The Nearest Point Calculation 

LLE. Let us denote, by symbol rp, the function 

(I2) 

where, for the sake of simplicity of record, the unsubstantial subscripts are omitted. 
The minimum of function rp was determined for the given set of parameters {bj } 

by the following way: Function rp is considered to be a function of temperature T 
only, i.e., rp = cP(t, ~tC'f'), 2(1'». For each temperature chosen, the values of com­
position of coexisting phases ~I and 21 were determined from the equilibrium condi­
tions 

In ~ I + In Y I = In 21 + In Y 1 , (13.1) 

(I3b) 

where Yi and Yi is the value of activity coefficient of the i-th component at point 
(T, XI) and (T, ZI), respectively. The minimum of function cP is determined from the 
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equation ([J' = d([J/dT = 0, i.e. 

(I4) 

the values of derivatives occurring in Eq. (I4) being determined by differentiating 
the left- and right-hand sides of Eqs (13) with respect to temperature 

As an initial approximation of temperature when solving Eq. (I4), the experimental 
value of temperature was chosen in the first calculation cycle (i.e., for b = bO), in 
each next calculation cycle then the value of the nearest point determined in the 
preceding calculation cycle. When solving Eq. (I4), the Newton method was largely 
applied whose iteration prescription can be expressed in terms of function ([J in the 
form 

(I6) 

where the relaxation (reduction) parameter '1, 0 < '1 ~ 1, was chosen in the initial 
steps of the iteration process so that the absolute value of increment of temperature 
should not exceed the value of 0,2 K. Only in case of ([J" < 0 (unsuitable first ap­
proximation of temperature; very rare case), the gradient method AT = -'1([J'(T01d) 

was applied, where parameter '1, '1 > 0, was chosen so that IATI = 0,1 K. To cal­
culate the second derivative ([J"(T), it is necessary to know the values of second 
derivatives d2xt!dT2 and d2~ddT2. These values can be easily obtained by the 
repeated differentiation of the left- and right. hand sides of system of equations (15) 
with respect to temperature. It is advisable to take notice that the coefficient of matrix 
of the Newton method for the solution of system of equation (13), the coefficients of 
matrix of system of equations (I5) as well as the coefficients of matrix of system of 
equations for calculating the above-mentioned second derivatives are identical, i.e., 
the said systems of equations differ only in the right-hand sides. This fact accelerates 
very much the calculation procedure. 

The basic assumption of success of the proposed procedure is a safe and suffi­
ciently rapid calculation of the composition of coexisting phases XI and ~ I (i.e., the 
solution of system of equations (13)) for the given value of temperature. The Newton 
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method with two independent val ues of relaxation (reduction) parameters 18, rt and 
fl., a < "I. Il ~ 1 was used 

~~ew = ~~Id + rt Ax • 

2~ew = 2~ld + fl. Az , 

(17a) 

(17b) 

where Ax and Az are the increments determined by the Newton method. The values 
of '1 and fl. are chosen so that the new approximations of compositions of coexisting 
phases should not lie in the labile region and the absolute values of increments 
should not ecseed the value of 0·01. As the first approximation of the solution of 
system of equations (13), the resulting values of preceding calculations or the expe­
rimental values in the first calculation cycle are used. The calculated values of the 
LLE composition depend very sensibly on the values of parameters {bj } chosen. 
Therefore, it may happen in the initial calculation cycles that the experimental 
temperatures of some points (x~. z~. re) are higher or lower than the calculated 
upper or lower critical temperature, respectively. In such a case, system of equations 
(/3) has no solution at ~1 =/= 21 for T = Te (the iteration process converges to the 
trivial solution ~ 1 = z 1), and the experimental points said are not considered in the 
given calculation cycle. In next calculation cycles when still better and better agree­
ment occurs between the experimental and calculated coordinates of the critical 
point, these experimental points are gradually included into the calculation process. 

VLE. Let us denote by symbol IJI the function 

IJI = (x~ - ~lY/U; + (y~ - Ylf/u; + (Te - t)2/ui: + 
+ (pe _ P)2/U ; . (18) 

Function IJI is a function of variables ~1 and 1', i.e., 'I' = 'I'(~l'1', Yl(~l' t),P(~l' 1'») 
where for values YI and P hold the equilibrium conditions 

(I9a) 

(I9b) 

When determining the corrections for the nonideal behaviour of the vapour phase, 
it was assumed that the P-V-Tbehaviour of the gas mixture could be described by 
the vi rial expansion with two first terms. The minimum of function IJI fulfils the 
system of two nonlinear equations 

(20a) 
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(20b) 

The system of equations (20) was solved by the Newton method analogously to the 
LLE case. The value of first derivatives aYl/aXl' ayt/aTas well as of second deriva­
tives iJ2Yl/aX~. a2y/ax 1aT, a2yt/aT2 (and similarly for pressure p) were determined 
from Eqs (19) where it is suitable to consider the second equilibrium condition 
in logarithmic form. The values of derivatives of corrections ({JI and ({J2 are considered 
to be zero, i.e., corrections ({JI and ({J2 are considered in each calculation cycle constant 
determined from the values (.91' 1', p) from the preceding calculation cycle (or from 
experimental values y~, T e, pe in the first calculation cycle). 

Calculation of Derivatives of Variables with Respect to Parameters 

As the first possibility of calculating the values of derivatives given in Eqs (9), the 
method of numerical differentiation offers, i.e., e.g. 

where ek is the vector whose k-th component equals unity and the other components 
are zero and symbol It denotes the step length of numerical differentiation. On the 
basis of the calculations carried out we assume that this method of determining 
the derivatives required is not numerically stable for the LLE data. The calculated 
LLE data are in some temperature and concentration regions very sensible to a change 
of the vector of parameters. b. Therefore it is necessary to choose the step length It 
very circumspectly, and with some systems it is not possible to choose a constant 
value of It in the whole temperature and concentration range. For the reasons said 
it is therefore more suitable to prefer the analytical method of the determination 
of the derivatives required which is more laborious but it is not only numerically 
stable but also less demanding from the point of view of time of computation. 

LLE. The nearest point (x" 2" f) is determined by five equations involved in rela­
tions (13)-(15) in which variables Xl, 2[. f, dXl/dTand Ml/dToccur as unknown 
quantities. Values of the variables are functions of single components of vector b. 
If we differentiate the left- and right-hand sides of the equations mentioned above 
with respect to parameter bk • we obtain a system of five linear equations for five 
unknowns axdabk' oz[/abk • af/abk• a2Xl/aTabk, and a221/aTabk. Let us take a notice 
again that, e.g., the matrix of the system of equations resulting from the differentia­
tion of the left- and right-hand sides of system of equations (13) with respect to 
parameter bk has the same form as the matrix of system of equations (15). These 
facts dispatch very much the construction of the matrix of the above-mentioned 
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system of the five linear equations. When calculating the coefficients of this system 
of equations, it is suitable to use also the method of numerical differentiation. On 
differentiating the right-hand side of system of equations (15) with respect to param­
eter bk , we meet with the expression 

where it is emphasized under what conditions is to be differentiated. The last deriva­
tive on the right-hand side, whose non-nullity follows from the explicit dependence 
of activity coefficient on vector b, is determined numerically according to a relation 
analogous to Eq. (21). 

The necessity of calculating the unnecessary values of a2~daTabk and a2~daTabk 
follows from the fact that we did not used the Lagrange multipliers for the problem 
of finding the minimum of function (12) with boundary conditions (13). Both the 
above-mentioned derivatives replace these multipliers. 

VLE. By differentiating the left- and right-hand sides of system of equations (20) 
with respect to parameter bk , we obtain the system of two linear equations for two 
unknowns a~dabk and of!obk • In this rearrangement of system of equations (20) 
we use the relations 

Yl = Yl(~l(b), feb), b), 

P = p(~l(b), feb), b). 

(23a) 

(23b) 

The explicit dependence of variables Yt and p on vector b is involved in prescriptions 
for activity coefficients. From relation (23) then follows 

(24a) 

(24b) 

(24c) 

and analogously for pressure p. 

At the first and partly at the second and third relations it is emphasized under what 
conditions the differentiation is carried out. The derivatives which are given as the 
third term on the right-hand side of relations (24) were determined numerically 
according to the relation which is analogous to Eq. (21). After inserting the relations 
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(24) and the analogous relations for pressure into the system of equations (20), we 
obtain the above-mentioned system of two linear equations for two unknowns 
ex t/abk and af/abk • Let us take a notice again that the matrix of this system is iden­
tical with the matrix of the system of the Newton method when solving the system 
of equations (20). The remaining two derivatives ayt/abk and ap/abk are then deter­
mined from Eqs (24) and from the relations analogous to them. 

Critical point. The critical point is determined, for a fixed set of parameters {bJ, 
by solving the system of two equations for two unknowns x Ie and t., 

GII(X tc , t." b) = 0, 

Gl1l(X le, fe' b) = 0, 

(25a) 

(25b) 

where Gll and G1ll is the second and third derivative of the Gibbs energy of mixing 
with respect to composition. The system of equations (25) was solved by the Newton 
method. The derivatives of critical values with respect to parameters were determined 
from the system of linear equations 

Glll(aXle/abk) + GllT(at.,/abk ) = -(aGU /abk )Xl,T, (26a) 

Gl1U(axle/abk) + GlllT(at.,/abk ) = -(aG111 /abk)xl,T' (26b) 

where GllT and GUlf is the derivative of Gu and G11t , respectively, with respect 
to temperature. The values of derivatives on the right-hand side of system of equa­
tions (26) were assessed numerically. The matrix of system (26) and the matrix of 
the Newton method of solution of system (25) are identical. 

Calculation of Increments {Abj } and First Approximation of Parameters {bJ} 

If we introduce, for the sake of simplification of the record,~the new symbols in terms 
of the relations 

(27a) 

and analogously for the other variables, then from relations (7)-(9) follows that 
for the vector of increments Ab holds the system of linear equations W Ab = d, 
where the coefficients of matrix Wand of the vector on the right-hand side d can be 
determined from the relations 

+ L [x~)x~P + y<k)y(j) + t~k)t~p + p(k)p(j)] , (27b) 
"(VLE) 
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d = " [X(k) Ax + ilk) Az + t(k) A To ] + X(k) Ax + t(k) AT + k L... L L L Lee c c 
n(LLE) 

+ I [x~) Axv + y(k) Ay + t~k) ATv + p(k) APJ, 
n(VLE) 

j, k = I, 2, ... , M . (27c} 

When determining new approximations {bjew}, the values of increments can be 
reduced according to Eq. (10). 

The use of the ML method, especially in case of the LLE data with critical region, 
is very sensible to the first approximation of parameters. To determine the first 
approximation, it is possible to employ the parameters calculated from the mutual 
solubility at two temperatures, or at one temperature and from the critical point, 
or from the parameters determined by the minimization of the activity differences 
at the compositions of coexisting phases found experimentally. For more detail see19• 

Application to the Tetrahydrofuran(1)-Water(2) System 

This binary system (thereinafter we will use abbreviations THF and W) exhibits 
great deviations from the Raoult law20 - 23 which along with an S-shaped HE de­
pendence on composition22 ,24.25 at normal temperatures lead to the fact that the 
system at higher temperatures, as it has been predicted by Franks and Reid26, 
separates into two liquid phases and forms a closed-loop curve of limited miscibility 
(Matous and co-workers23) - see Fig. 1. 

The employment of common correlation equations without special treatment 
(fixing up the Gll minimum or the critical point) for this system fails (Tassios27, 
Matous and co-workers23, Novak and co-workers19). The very parameters of the 

150 r------r-------, 

';,,, ,0--- -
\ ----\ ...... 
\- -- - - --- --~ '=-------

50 

I 

o 0'5 
x, 

------------------

FIG. 1 

Liquid-liquid equilibrium at p > 100 kPa 
( --- -) and vapour-liquid equilibrium at 
101·32 kPa (---) in the THF(I)-W(2) 
system 
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RK equation obtained by Cigna and Sebastianeo from the VLE data at normal 
pressure corresponded to a heterogeneous system and led the authors30 to the false 
conclusion that the system separated into two liquid phases already at the temperature 
corresponding to the normal presure even though this separation was not observed. 
The application of the modified Wilson equation19 whose parameters were deter­
mined on the basis of LLE data was comparatively successful. A disadvantage of 
this equation was a less accurate description of VLE at low temperatures. For these 
reasons the modified Wilson equation was also e~tended by further terms of the 
RK equation. 

When calculating the parameters of Eq. (3), the smoothed LLE data were used. 
In addition to the LLE data, the VLE were used, viz. by Shnitko and Kogan at 
normal pressure21 , Matous and co-workers23 at 70 and 50°C, and Signer and co­
-workers22 at 25°C. To assess the corrections for the nonideal behaviour of the 
vapour phase, the virial equation with the second virial coefficient was employed. 
The second vi rial coefficient of the pure substances was calculated from the rela­
tion! 3 .28 

and the cross virial coefficient from the relation29 

Constants CXn, PB as weB as further quantities are summarized in Table I. 

TABLE I 

The pure substance constants used 

A a 

B 
C 

Quantity 

v~, cm3 /mold 

DCB , cm3 /mole 

PB' K . cm3 /mole 

Tetrahydrofuran 

14'09365b 

2769·32 
226'3 

81'75 
879 
-6'01 . 105 

Water 

16'32931 C 

3 841·72 
228'0 

18·07 
1 510 

-7'583.105 

(28) 

(29) 

a The Antoine equation was used in the form In pO /kPa = A - B/(tj"C + C); b see ref.23 ; C see 
ref. 30; d see ref.! 7 ; e in case of water, constants DCB and PB were determined from the data reported 
by Dymond and Smith3 ! for the temperature interval 320-420 K, for THF only one experi­
mental data point is available, and therefore the values estimated according to Pitzer and Curl32 

were used as well. 
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The estimate of the first approximation of parameters is with this system especially 
important because the system forms relatively small heterogeneous region (Fig. 1) 
which need not be cought at all with bad estimate of parameters. In this case 
we started from parameters e l2 , e21 which were determined for the chosen value 
of Bl on the basis of both critical points by solving conditions (25). In preceding 
calculations, good experience was obtained with these parameters: 

LCST: Xl e = 0'220, Te = 349·95 K, e12 = 673'1 K, e2l = 768·9 K, Bl = 0·23 
(chosen); 
UCST: Xl e = 0'1875, r., = 410·25 K, e l2 = 834'4 K, e21 = 567'8 K, Bl = 0·80 
(chosen). 

From these values, we easily determine the first approximation 

e12 = 2·675 - 263fT, 

e2l = -3·325 + 1 936JT, 

Bl = 4'108 - 1 357JT. 

The first approximations of further parameters were zero. 

On using this initial approximation, a number of calculations were carried out 
in which different terms of the RK equation were considered and if need be even 
the use of quadratic terms in temperature dependence. After performing a good 
many calculations, the fol1owing set of parameters was chosen as the best 

el2 = 6·7085 - 1 687'OJT, 

e21 = -0,83984 + I 185'5!T, 

Bl = 1·1675 - 348'91!T, 

B3 -0,28188 + 93'133!T, 

B4 - 0·03497 . 

(30) 

This set yields the following deviations (exp - calc) in the critical point coordinates 
(aXle = 0'005, aTe = 0·2 K were used in the calculations): 

LCST: AXle = -0'0037, ATe = 0·63 K; VCST: AXle = 0'0077, ATe = -0'36 K. 

The deviations in compositions of coexisting phases, temperature, and if need 
be in pressure are summarized in Table II. The used values of ax I' ay!, azt' and aT 
are as well given in this table. In case of pressure it was assumed that it was deter­
mined with a relative accuracy of 0'15%. 

In Table III, the values of activity coefficients at 25°C are given calculated in terms 
of parameters (30) and those given by Shnitko and Kogan20 and Signer and co-
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-workers21 • It can be seen that in most cases the calculated values lie between the 
experimental values of both the authors. The advantage of the set of parameters 
(30) compared to the modified Wilson equation consists among others in the fact 
that we succeded in decreasing the high value of the calculated limiting activity 

TABLE II 

The total deviations (exp - calc) in compositions of coexisting phases, temperature, and pressure 
in the single data sets used for calculating in the THF-W system 

No. of 
ax' 100 ay . l00a Type of data points aT Sx, . 100 Sy, .100a ST, K Sp,kPa 

LLEb 15 0·20 0·20 0·10 0·737 0'583 0·15 
VLEc (p = 101·32.kPa) 17 0·05 0·10 0'05 0'14 0·31 0·09 0'23 
VLEb (t = 70°C) 14 0·20 0·20 0·05 0·36 0·55 0·06 0·21 
VLEb (t = 50°C) 20 0·20 0·20 0'05 0·35 0·34 0·04 0·05 
VLEd (t = 25°C) 10 0'10 0·20 0·05 0·28 0·65 0·20 0·08 
VLE (overall) 61 0·30 0·45 0·10 0·16 

a In case of LLE data, the respective value corresponds to the second liquid phase; " see ref.23 ; 

C see ref. 21; d see ref.22. 

TABLE III 

The values of activity coefficients in the THF(1)-W(2) system at 25°C 

This work Signer et al. 2 2 Shnitko and Kogan21 

XI --

In )'1 In )'2 In )'1 In )'2 In )'1 In )'2 

0·0 3·424 0 2·970 0 (3'5)a 0 
0·\ 2·002 0·062 2·024 0·039 1·922 0'069 
0·2 1'380 0·168 1·416 0·148 1·296 0·185 
0·3 1·000 0·294 1·030 0·270 0·933 0·311 
0·4 0·732 0-437 0·751 0·419 0·692 0·449 
0'5 0'526 0·606 0·542 0'593 0·515 0'586 
0·6 0·359 0·809 0·372 0·802 0·376 0·765 
0·7 0·223 \·064 0·231 1·065 0·262 0·997 
0·8 0·113 1·395 0'113 1·425 0·170 1'319 
0·9 0·034 1-849 0·030 1·949 0·088 1·866 
1·0 0 2·545 0 2·913 0 (2'8)D 

a The values read from a diagram by the authors of this work. 
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coefficient of tetrahydrofuran in water which was higher than 54 (i.e., In 1'':' ~ 4'0). 
This substantial improvement was successful not until taking higher terms of the 
RK equation. 

The comparison of the calculated heats of mixing with experimental ones at 25°e 
is presented in Fig. 2. A relatively good agreement is evident from the figure. 

CONCLUSION 

The maximum likelihood method was applied to the correlation of the excess Gibbs 
energy of heterogeneous systems. As input data it is possible to use the data on 
mutual solubility (indirect ones obtained by the turbidity method as well), on critical 
point, and the vapour-liquid equilibrium data (indirect ones as well) from the 
homogeneous region if any. The data on HE(Xl' T) have not been included into 
the calculation for the time being and serve as a check of reliability of the set of 
parameters obtained. 

The superposition of the Wilson and Redlich-Kister equations, which may be 
considered to be an extended modified Wilson equation (the Wilson equation with 
the first concentration term of the RK equation), was applied to the calculation. 
The calculation program can be used, however, also for other equations on replacing 
the respective procedure which assesses the values of activity coefficients, their 
derivatives with respect to composition, temperature, etc. 

The calculation program was applied in this work to the very complicated system 
tetrahydrofuran-water which exhibits a closed region of limited miscibility. It is pos­
sible to say that nine parameters determined describe the behaviour of this system 
in the whole concentration range and in the temperature interval of 25 -137,1 ce 
(UeST) nearly in the limits of experimental errors. At first sight it could seem that 
the data presented in Table II are at variance with this conclusion. However, it is 
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FIG. 2 

Experimental (0, ref. 24) and calculated 
( - x - x - x) dependence HE(x 1) in the 
THF(I)-W(2) system at 25°C 
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necessary to account of the fact that the errors reported by the authors of experi­
mental works refer mostly to the reproducibility of the data and do not involve 
the error in method or apparatus. This can be documented when comparing the 
data, e.g., by Signer and co-workers22 and Shnitko and co-workers21 at 25°C. Even 
though both the authors report O"p = 0·026 kPa (ref.22) and O"p =0·066 kPa (ref. 21 ), 

their data differ on the average by 1 kPa, i.e., more than 20 times the declared error. 
The used (estimated) values of 0"" O"y, O"T' and O"p are therefore subject to a considerable 
uncertainty, and therefore the agreement between the calculated and estimated 
standard deviations of the measured quantities may be considered good. 

In case of the THF-W system it is possible to say that the obtained thermodynamic 
description corresponds to the given system and that it is possible to apply it also 
to multicomponent systems. In case of such systems as, e.g., benzene- water, where 
the range of miscibility is very small, the present model need not yield the best results 
on applying to multicomponent systems. The reason is that the parameters of the 
model used are obtained from narrow concentration ends, and the model is extra­
polated in case of a multicomponent mixture nearly to the whole concentration 
range and this extrapolation may be very inaccurate. If we wish to apply the descrip­
tion of such a system also to a multicomponent system. we recommend then to 
account of the data of multicomponent systems (whether qualitatively or quantitati­
vely). 

The detail description of the computation program including the used relations 
will be given elsewhereB . 

LIST OF SYMBOLS 

A constant of Antoine equation 
Ai j parameter of Wilson equation (3) 
B constant of Antoine equation 
B j temperature dependent parameter in RK equations (5). (6) 
Bij second virial coefficient 
hj temperature independent constant in Eqs (4)-- (6) 
C constant of Antoine equation 
C 12' C 21 temperature dependent parameters in Eq. (4) 
dj component of vector on right-hand side of Eq. (27) 
FML • r LLE• FVLE objective functions determined by Eqs (7) and (8) 
GE excess Gibbs energy 
Gil' Gill' Gil T second (with respect to composition), third (with respect to composition), and 

third (twice with respect to composition and once with respect to temperature) deriva­
tive of Gibbs energy of mixing 

HL enthalpy of mixing 
Ai number of adjustable parameters considered 

n number of experimental points 
p pressure 
Pi' saturated vapour pressure of i-th component 
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Q = GE/RT dimensionless excess Gibbs energy 
QWilson, Q KR parts of Q corresponding to Wilson and RK equations 
R gas constant 

n 

Sy = [ L (vr - Dj)2/ n]l /2 mean quadratic deviation of general variable v 
;=1 

T thermodynamic temperature 
t Celsius temperature 
vf molar volume of i-th component in liquid phase 
W matrix defined by Eq. (27) 
x 
y 
Z 

O:B' PB 

r 

mole fraction in liquid phase 
mole fraction in vapour phase 
mole fraction of second liquid phase 
parameters of Eq. (28) 
activity coefficient 

({I 

e 
correction term for real behaviour of vapour phase 
accuracy required 

Y/,/l relaxation (reduction) parameters 
standard deviation (j 

<P,'!' functions defined by Eqs (12) and (18) 

Subscripts 

i, j, k component; summation index 
L LLE data 
V VLE data 

Superscripts 

e experimental value 
first liquid phase 

~ second liquid phase 
" calculated value 

derivative with respect to parameter 
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